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1. Introduction

The theory of thermoelastic waves is well established [1]. The governing field equations in classical dynamic coupled
thermoelasticity are wave-type (hyperbolic) equation of motion and diffusion-type (parabolic) equation of heat
conduction. It is seen that a part of the solution of energy equation extends to infinity. This means that a part of the
disturbance has an infinite velocity of propagation, which is physically unrealistic. The non-classical theories of
thermoelasticity have been developed to overcome this drawback. Lord and Shulman [2] incorporated a flux-rate term in
Fourier’s law of heat conduction in order to formulate a generalized theory that admits finite speed for thermal signals.
Green and Lindsay [3] also included a temperature rate term among the constitutive relations to develop a temperature
rate dependent thermoelasticity that does not violate the classical Fourier’s law of heat conduction when the body under
consideration has a center of symmetry. This theory also predicts a finite speed of heat propagation. According to these
generalizations, heat propagation should be viewed as a wave phenomenon rather than a diffusion one. A wave-like
thermal disturbance is referred to as ‘second sound’ by Chandrasekharaiah [4]. These theories are also supported by
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experiments which exhibited the actual occurrence of second sound at low temperatures and small intervals of time.
Researchers such as [5-7] experimentally proved for solid helium that thermal waves (second sound) propagating with
finite, though quite large, speed also exist. Sharma et al. [8] and Sharma [9] investigated the propagation of thermoelastic
Rayleigh-Lamb waves in homogeneous isotropic plates in the context of conventional coupled thermoelasticity (CT) and
generalized theories of thermoelasticity under different conditions.

Kirova et al. [10] have studied the asymptotic behavior for linear and nonlinear waves in viscoelastic materials.
Ryabenkov and Faizullina [11] proved that asymptotic method is identical with method of hypothesis and successive
approximations for slabs and plates. Agalovyan and Gevorkyan [12] solved first boundary-value problem for forced
vibrations of an isotropic strip by an asymptotic method. Gales [13] studied asymptotic spatial behavior of solutions in
thermoelastic solids. Gevorgyan [14] investigated the thermoelastic wave propagation in a transversely isotropic heat
conducting and non-heat conducting elastic materials. Losin [15,16] studied the asymptotic of flexural and extensional
waves in homogeneous isotropic elastic plate. Losin [17] established the equivalence of dispersion relations obtained from
operator plate model and Rayleigh-Lamb frequency equation. Sharma et al. [18] investigated the flexural and transversal
wave motions in homogeneous isotropic thermoelastic plates by using asymptotic method. The authors [15,16] and [18]
used the asymptotic method applied by Protsenko [19] for thin n-shelled structures in their investigation on elastic and
thermoelastic plates, respectively. Moreover, it is pertinent to mention here that the dispersion relations reported in the
works of Losin [15,16] were of sixth degree polynomial equations in frequency/phase velocity instead of tenth degree as
reported in [18]. However, the corresponding equivalence relations obtained by Losin [17] in case of symmetric
(extensional) and skewsymmetric (flexural) motions of elastic plate are also tenth degree polynomial equations in phase
velocity (see terms under the braces of Egs. (7) and (14) in [17]). Equivalence of these relations has been established by
considering terms up to eighth power of ny=nh.

Owing to the technological advances in recent years, plate elements are commonly selected as design components in
many engineering structures, especially in the aerospace, marine and construction sectors, because of their ability to
resist loads. With the evolution of light plate-structures, tremendous research interests in the vibration of the plates
are generated. The negligence of considering vibration as a design factor can lead to excessive deflections and failures.
The vibration design aspect is even more important in micro-machines such as electronic packaging, micro-robots, etc.
because of their enhanced sensitivities to vibrations. The dynamical problems of the theory of elasticity become
increasingly important due to their application in diverse fields. The high velocity of modern aircrafts gives rise
to aerodynamic heating, which produces intense thermal stresses that reduce the strength of the aircraft structure.
Keeping in view the above facts and physically realistic nature of non-classical (generalized) thermoelasticity, the
present work is an attempt to find a frequency and velocity dispersion relation from three-dimensional analog of the
Rayleigh-Lamb frequency equation that would be sufficient for extensional and flexural wave motion in generalized
thermoelastic plates. The analysis is based on the approach and asymptotic method of Prosenko [19] used in
Refs.[15,16,18] with modification that the approximate matrix inversion by Neumann'’s series has been replaced by
actual matrix inversion. This modification is found very effective as it eliminates restrictions due to the convergence
interval for the infinite matrix series and permits the model to be applicable for long and short wave asymptotics in any
material [15].

2. BASIC equations and constitutive relations

The constitutive relations and equations governing linear generalized thermoelastic interaction in a homogenous
isotropic solid are as follows:
The strain-displacement relations

1 ..
€= i(ui,j-l—llj,i), i,j=123 (1)
The stress-strain temperature relations
, oT .
Gij=Aeﬁ,»j+2,ue,»jfﬁ<T+t162kE>6U, l,]=1,2,3 (2)
The equations of motion
ooy Fu ..
x P’ Lj=123 3)

The equation of heat conduction
aT T & o
KV2T- pCe< +to ) /m( +todi > (1 +to 6t>Q 0 (4)

where e,J and oy are the components of strain and stress tensors, respectively; u=(us, u,, u3) is the displacement vector,
e= V- is the dilatation, V is del operator, p is the density, C, is the specific heat at constant strain. T is the change of
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temperature from reference temperature Tp; A, i are Lame’s constant, K is the thermal conductivity, to, t; are thermal
relaxation times, d; and Q are Kronecker delta and heat source term, respectively and ff=(34+2u)u.,o being coefficient of
linear thermal expansion. d, i=1,2 is Kronecker delta; where k=1 corresponds to Lord—Shulman (LS) and k=2 corresponds
to Green-Lindsay (GL) theory of generalized thermoelasticity. According to Strunin [20] the inequalities to > t; > 0 of Green
[21] obeyed by the thermal relaxation time are not mandatory.

3. Formulation of the problem

We consider wave motion in homogenous isotropic thermoelastic plate of thickness 2h initially at uniform temperature
To in the undistributed state. The origin of Cartesian coordinate system ‘oxyz’ is taken at any point ‘o’ in the middle plane of
the plate and z-axis is pointing along the thickness of the plate. We assume that the plate is infinite in x and y directions
which thus occupies the region

Q={-00<X, y<oo, —h<z<hj

In the region Q, the basic governing equations (3) and (4) in non-dimensional form, in the absence of body forces and
heat sources, become

& ? & 2 [PV Pw a\oT &u
{ax2+5 <y2+a >}”+(15) axay ez (HSZ"tlat) x o %)
o * & > [ Pu  Pw o\ oT &*v
{6_)/_2—"_3 (6}(2 +a )}U-F(]—(S ) —6x6y+—6yaz —<1+62kf] §>@ =32 (6)
2 2 2 2 2 2
2 O 0 0 2. [ 0°u o°v o\ ol _o'w
{5 (ax2 + ayz> + azZ}WJr(l_(S )<6xaz + ayaz> (1 +out at) oz o Q)
? P ou v ow
(57+6_)/_2+62>T__<1+t0 >T &~ <1+t061k5t><&+@+§>:0 (8)
where we have used the following non-dimensional quantities
N O Ly . PO'C
x,y,z)= o *xy.2; @, v,w)= BTy (uvw)
T w*h A+2p u
T'=—;t=w't thi=w'h; ti=w't; = ; o= =58
To ! ! 0 0 o ! P )
2 _ c2 U FTo ., (+20c. . _ Oy
0 “Tvep T peGarz T Tk CiT T, ®

Here ¢ is thermoelastic—coupling constant, u, v,and w are displacement components, and c;, ¢, are the velocities of
longitudinal and transverse waves, respectively. In Eqgs. (5)-(8) and in the following analysis, the primes have been
suppressed for convenience unless stated otherwise.

The surfaces z= + h of the plate are assumed to be stress free and thermally insulated. Therefore, the non-dimensional
boundary conditions to be satisfied are given as

2 /o0u ow
0 (az + 6_x> -

2 (OV oW _
0 <§+@>_O

2. fou oV ow 0
(1-20 >(6X + ay) +§7(1+62kt1 at)T 0
oT
&%= (10)
4. Solution of the problem by asymptotic method
We assume harmonic wave solution of the form
u, T, v, WX, y,z,t)= Tl)(Z) exp{—i(?i)—wt)} (11)

where U (@2)=U@), 0@), V(z), W() is amplitude vector, w is the circular frequency depending on the wavenumber
o= (nq, ny) and position vector T = X, ¥).
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Using solution (11) in governing equations (5)-(9) and boundary conditions (10), we obtain

& s . .
(dzz Q1 o ) u(z)= 0, in the domain Q
d & — —>
G(z,n)= &—Sl U(z)=0, on z=+h

where Ql = TlQl, R1 = leRl, §1 = 1’151
Q1 =(qiaxar R1=(Tipaxar S1=Ciaxa

— - t .
are 4 x 4 order matrices and o(z, n) = [5 26w T, o zayz GZZ] is thermal stress vector.
Here the non-zero elements of matrices Q;, R; and S; are given as

Qua=i1(0%=1), Qua=—ecwTo, Q3a=iM(6 °~1), Ga1 =iN(1-0%), qap=—icty,

443 = iﬁz(l—(sz), = 0‘72ﬁ% +ﬁ§—572 2

1 = 7iwﬁ1 SC‘L"o, T = ﬁ% +ﬁ% +T0C2, T3 = 7l.8ﬁ2Cw‘C'0, 31 = (57271)ﬁ1 ﬁz, I3y = 7T1ﬁ2C(572,
33 = n1 +0~ _2 -0 2C2 Tag = 52(ﬁ% +ﬁ%)—C2, S14=10Ny, S34=1Ny, S41 =i(1 —252)ﬁ1,

S4p = —l"!,'] C, S43= i(1—252)ﬁ2

where

— <2 o s
c%, Tp=-TiMCcd ", riz=mmn(d

513

, . . . A _ _ — — A oA _
To=iw 1 —tedy; T1=io ™' =116k, To=i®@ '—to, M =n1/n, Ta=ny/n, n=|A|=/n2+n3, W =nh, A=, W)

?(ﬁ)) = 3(n)/n is the phase velocity and c is the phase speed of a traveling wave and n is the unit direction vector.

For waves propagating along x-axis, (;, 1) =(1, 0) and hence Egs. (12) and (13) become

d? d N\ = . .
<dzz dzR)u(z): 0, in the domain Q

G6(z,n) = (%—S)ﬁ(z):ﬁ), onz=+h

where the matrices Q, R and S can be obtained from Q;, R; and S; defined in Eq. (14) by setting(;, )= (1, 0).
Employing finite asymptotic expansions [18] for ¢(z, n) and eliminating higher order derivatives, we obtain

212 4
1+ A 2 gl v 0)-n {S—h—nC—h—N}u(O): 0

2 24

h2n? h4n* 1
2 24

242
{Q S+h6n E+L n F}_’(”

h?n? . h*n* -
120 H}
=
where ﬁ(l)(O):<%) .

zZ=

« _—>
(0)—n{R ——5 G5 H[TO=0

A=R"+(Q'-5Q", B=G+EQ", C=(Q"-SR",
E=C+AQ*, F=BQ"'+N, G=AR*, H=BR*, N=ER*
It is noticed that the matrices A and B have block diagonal structures of the type

1
A A" o _|B1 O
0 Az ’ (0] B2
whereA; = (@j);,2, B1 = (0jj)2,2, Az = diag(ass, agq), By = diag(bs3, bag).
Here the elements of these matrices are given below:

a1 =3-202—12, Q13 =-20T1V5, Gy =&177' (2 =2)v5, a3 =1+ (To+&177'e v

a33 = 1—1}?, agqa=—1 +252—52U§, by = 5—452—171] U?-FU?,

b21 = 81'5{15115 [2(252—3)—17121/?} , b]z = —4(3’[] 1}5—2‘51511’131/?, bzz =1 +m4v§ +m5vf,

b33 = (1—1)?)2, b44 :452—3—1’1’151}52—{—”’171/?, Vs = E, m; = 252(2572—1)(1—6[152),

0

My = —2+6°[2T0+&1(2—0%) +6°(1-10), m3 = [(To—1)+&1], M4 =25"(To+2¢1),
ms = 54[‘[02 +é&1(to—1)], mg=2[-1 +62(51 —&1 52)], m; = 54(1 —&1), O01= ]752, S] =1 +52,

Noting that the coefficient of ﬁ)(l)(O) in Eq. (15) is a non-singular square matrix of order four, one can obtain the

resolving operator from Eqgs. (15) and (16) as

4,4
Pﬁ)(O):<P0+P2h6 +P4};2n0> (0):8

(17)
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where
Py =R*+(Q*-SM!S,
P, =G+EM1S-3(Q*-S)MIC,
P,=H+FM 'S—10EM'C-5Q*-S)M'N

Here the matrixM = (myj)4,4; My = &;+ (h?n?/2)a; + (h*n*/24)by, (i,j = 1,2,3,4) and M~ is its inverse. The matrix of the
operator P has in general a block diagonal structure of the form

P = diag(P;,Ps,, Ps,) (18)
thus we have
u
PL{Q} =0, Pg[V]=0, Ps,[W]=0
where P;=(pjj)2 x 2, Ps, = (P33)1,1 and Ps, = (pa4)1,1, respectively, govern the extensional, transversal and flexural in plane
motion of the plate. Eq. (17) has a non-trivial solution if and only if determinant
IP|=0 (19)
This leads to the secular equations

P11P22—P12P21 =0, P33 =0, pas=0 (20)

Egs. (20) are the three-dimensional analog of the Rayleigh-Lamb frequency equations for extensional, transversal and
flexural wave motion of a thermoelastic plate. The second equation in system (20) corresponds to the frequency equation
for transversal wave motion which remains independent of thermal variations and has already been discussed in Sharma
et al. [18]. In the following we confine our discussion to the study of extensional and flexural wave motions in the
generalized thermoelastic plate.

5. Extensional meotion of a plate

Because the operator P affects the displacement U and temperature 6 only, hence first equation of system (20) governs
the extensional vibrations. According to the structure (17) the operator P, the first equation in the system of equations (20)
provides us the extensional wave phase velocity equation as

601/32+h1l/;o+h31)§+h61/56+h91/?+h121)§+h15:0 (2])

where hy = e; +20e,/n?h?, h; = e;+20e; 1 /n*h? +120e; 5 /n*h*j=3i, i=1,2,3,4,5
The quantities e; (j=0 to 17) are defined as

eo = —03qs, €1 = a3qa—0xqs+0T1b3ds, €, = —asqa+(1+35%)gs,
e3 =304+ 0a3q3 +03G5—06T1(b3dy—byd3),
es = a3q1 +a1q5—02q2—(30% +1)qa—t1(brd3 +bsdy),

40
es= 5 (30" + )02 —~(qs +a371),
€6 = 4xq3 +3231q5—0305—03q4—1261510°d3—71 (b2d>—16b3),
€7 = 0yq1—a1q4—a304+ 302 — 523 +851qs +2015°€1d3 + 071 (bydy —b1d +4b3),

65 = Qs 27, 40501 0 + 3 (@102~4102)+ 261010 471 (2bs + 3 buch ),
o= — [q353 432440, +a255+12815152d2+166‘612b2],
ero=— [q3a1 +04—32G201 + G153+ 8G451 — 58 + 2610152 (6d; —da) + 45T, (4b; +b2)],
en =- {az—fb +4q401—7,03+ 13—0(41‘11 ~80201—0402)+261015° <13—0d1 —d2> +261 <b2 + 23—0b1>}.
e12 = 0503—32q301—1921616°, €13 = a185—32q101—8q301 + 5403—16£2015°,
e14=32y;61—4q301+03—05+ %(0154—&]151)-" ?815152, e15 =32010s,
e16 = —25601(20%—1), e17 = %51(3052—11)

where 9,=1+362, §3=16(26%—3),04=65%>—2,05=8(56*>—3)
and a;, b;, d; (i=1,2,3), q; (j=1, ..., 5) are given in Egs. (A.1-A.8).
Adopting the procedure of Sharma et al. [18], the frequency equation and group velocity in the present case are obtained as

eqwl? +hin?w!® + hantwd + hen®w® + hgnd w4+ hi;n"w? + hysn'2 =0 (22)
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e__1(e v10+ hiv8 + (he +h3)v8 + (2he + M%)V + (3h12 + hi)V2 + She +h (23)
L Vs 6@01);0+5h11/§+4h31/?+3h51/?+2h91)§+h12
where h =2e;+e;, 1/n?h?, j=3i,i=1234,5.
5.1. Long and short wavelength waves
In case of long wavelength (nh—0) and short wavelength (nh— oo ) limits, Eq. (21) reduces to
e e
’ (eow§+ h%coerh—i) =0 (24)
eoti? +ev10+esvd +esvl+egvt +epv2 +e15 =0 (25)

respectively. Eq. (24) clearly has one trivial root of multiplicity four and corresponding phase velocity is

Vs =2\/1—52/(1 +é&). The six pairs of roots of Eq. (25) are phase velocities of incoming and outgoing short wavelength

modes which depend on the parameters(e, ¢) only. Because the roots are, in general complex, therefore waves will be
attenuating in space and dispersive in character.

6. Flexural motion of a plate

Following the procedure of Sharma et al. [18], the phase velocity and group velocity equations, are obtained as

fovi®+g1v8 +g308 +gev + 802 +812 =0 (26)
e 1 <f1 v8+g1ve + (83 +g§)v;‘+(2g4+g§)v§+(3gs+gi;)> (27)
€ Vs 5fov8 +4g1v8 +3gv¢ + 28312 + 224
where gy =f +f/n?h?, g; =f;+f; 1 /n?h?>+£; o /n*h® gr = 26;+f; 1 /n?h?, j=3i,i=1,2,3 4.
Here the quantities f; (j=0 to 14) are obtained as
fo = —1205%(m7p3 + 240167164,
fi = 1208°[m7(p; +Pp3) +Meps]+2880[msps —10m3p; 17 ' &18{mypg + 1071 8°(m; —3)}],
f» =65%(20p36° —m7p1 +2880e,5%),
f=—1200%[B; +&177 ' 0{myps + 2pe(20% —3) + 107, 6° (3m; +40%—7)}],
fa=68"B,—576[3(p4Ps +73P9—105T1p7)—5615*m; +6 m3 + 6057 (ps +3)}],
fs = 40%[144m;—5p; 6> +30(ms3 +405%¢1)],
fo =1205%[Bs +mg(py + 1) —240e1 7718~ {mypro +2ps(26° —3)+105° 11 (46° 7+ 3my )},
fy = —65°B4+1728[ps—p4ys—DsYs + 10ps571]1+ 576081 5 [ma(1+30%) + 62 +985)—3],
fs = 120Bs +576[ps + (Mg +m7)5°],
fo=120B5—240¢, 171 0[20% =3+ 611 (40%—5)],
fio = —1200%[B;—1728{p4—0%(To +&1)y7 + 10pedT1 }— 2408, 5{—5+ 655 + 20(202 —3)}],
fi1 = 5765%[189—165%(5701 +% +7 +£101)],
fi2 = —230405%(36*—65° +4), fi3 =—-11525%(4326"—-8395%+318)
fia = 64512528,
The quantities B; (j=1, ..., 7) and p; (i=1, ..., 10) are defined by Egs. (A.9)-(A.21).
6.1. Long and short wavelength flexural waves
In case of long wavelength (nh— 0) and short wavelength (nh— o) limits, Eq. (26) reduces to
w§<f0w;‘+ %w§+%> =0 (28)
fol/go—i-fﬂ/f+f31/56+f51/?+f911§+f12:0 (29)

respectively. Clearly Eq. (28) has one trivial root (wZ=0) of multiplicity three with corresponding phase velocity equal to
zero and two pairs non-trivial roots. The solution of Eq. (29) gives the phase velocities (v;) of five pairs of incoming and
outgoing wave modes (in general complex) as function parameters(e, 6). Hence, the wave motion under consideration in
this case is dispersive and attenuating in character.
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7. Equivalence with thermoelastic Rayleigh-Lamb wave equation

Consider the thermoelastic Rayleigh-Lamb frequency equations for a thermoelastic plate [8], in the context of
generalized theories of thermoelasticity

tanm h] *' my@2-m?) [tanmsh] =  4B,;myn2(mj—m3)
- - (30)
tanph mz(e2—m3) | tanfqh (n2—B2)%(a2—m3)
where o2 =n?(c?-1), B2 =n%(c2/5*-1), m? =n?(a®c2-1), m3 =n?(b%c2-1), a?, b? = {(14+1o—iwet'oT) +

\/(1 —To—iwet'T1)} —4iweToToT1} /2.
Here, the positive and negative powers correspond to the flexural and extensional wave modes, respectively. After
expanding all tangent terms into the power series (considering only negative exponent), Eq. (30) takes the form:

1.0 2 14 26 4 s —
Yo+ gh*+ e st g hs+ oo P+ - =0 (31)
where

Yo = po(n>~p)’—An*mim3
Wy = (d+ B1o)(n° = 1) —4n*mim30,
Vs =[2(¢a+ Bl o) +5/3B1 $21n* — B)? —4n?mim3 (04 +5/3mim3)
Ve = Br [(Oa+mim3) o2 — 1)+ 05(Br o2 —0n))(n? — 1) —4n? mim30,
g = B1[02(0a+mim3) +02041(n*— ) —4n*mSms,
O;=(mi+mb), ¢g=02—0;, ¢,=0,0>—(04+mim3),
¢4 =02(04+mIm2)—0,0,4
It can be established that all the coefficients of y/,(c,0) are completely identical to those of P; in operator P of Eq. (18)
associated with the extensional motion in the operator plate model. That is we have
Wa(c, 8) =P ™(c,9), (n=0,2,4,6,...) (32)
This type of motion is governed by the dispersion relation P;(c,0)=0, reproduced here with the corresponding order of
approximation
62

1 o2 17
v2 (P;‘”(c, )+ §;7213;2>(c. O+ En“l){“)(c, O+ mnGPL(G)(c,5)+ mnspf”(c, 8)+ - ) =0 (33)

where =hn

PO(c,8) = (> —@o)Us* +[1 +4(p,— P, — V2 —4d1,
PP(C,0) = —(Qyg+ P01+ Py =0 WE +[1-70% +40,0 2+ 4,4+ (3 +4 —47,0 Ve,
—4[1.5-45" 0,0 2+ Pyt Pr(3+01— )2 +1254,
P (€,0) = —0.3[05(604—50%) + (4 + §,)(5-65M)v§ +0.3r1 v -0.3r,v5,
—0.3[40, + (7, +236>—38)—40¢,, +45,(17+385%)—31]v2 +2.4(25¢, + 145> 8),
PP(€.0) = —[(P4+ P41 = Po(Pa—0"MW}° +T6VE + 1508 +1av,
+2[240%*—9-160,—40,(5+ 1)V + 205,
PP(C,0) = [(@ + P4)5> =020 V12 —11005" +rovE —rgvl + 1707,
—[366° =13+ 100, +4¢,(36*~9—2¢,)v2—1251) (34)
Here the quantities r; (i=1 to 10) and @; (i = 2,4) are defined by Eqgs. (A.22-A.32).
The only difference between Eqs. (21) and (33) is in factors outside the braces. Eq. (33) has an extra trivial solution and
the identity of expressions inside the braces guarantees the equivalence of non-trivial roots for extensional modes.
Similarly after expanding all the tangent functions into the power series (considering only positive exponent), Eq. (30)

takes the form as that of Eq. (42) in Sharma et al. [18]. The resulting equation also has an extra trivial solution and the
identity of expressions inside the braces guarantees the equivalence of non-trivial roots in case of flexural modes.

8. Special cases
In this section the wave motion of elastic plate under isothermal and isentropic (adiabatic) conditions has been discussed.
(a) Elastic plate under thermal equilibrium

In the case of uncoupled thermoelasticity (elastic plate), the coefficient of linear thermal expansion vanishes because
the elastic and thermal fields are independent of each other so that =0 which implies that ¢=0. The dispersion
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equation (21) for extensional motion reduced to tenth degree polynomial in vs whereas the secular equation (26) for
flexural motion preserves its nature with same degree. These equations provide us five modes of wave propagation
each for extensional and flexural motions of a homogeneous isotropic elastic plate. This is in agreement with Sharma
and Kumar [24]. The Rayleigh-Lamb frequency equation (30) in this case gets reduced to the dispersion relation of
elastic plate waves [22,26] for ¢=0 and the consequent equivalence of results agree with Losin [17].
(b) Elastic plate under isentropic conditions

In this case of thermoelasticity, the coefficient of thermal conductivity vanishes, so that K=0. Consequently the
dispersion equation (21) for extensional motion gets reduced to tenth degree polynomial in vs here in contrast to
the flexural motion given by polynomial equation (26) which preserve its degree and remains similar in nature.
Thus there exist which give five modes of wave propagation for each extensional and flexural motions in a
homogeneous isotropic elastic plate.

9. Numerical results and discussion

For the purpose of numerical illustrations, we consider wave propagation in an infinite, homogenous isotropic,
thermoelastic plate of solid helium material. The physical data of solid helium crystal as reported in Sharma and Kumar
[23] given by

2=02120 x 10" N/m?, u=0.1245 x 10'°N/m?, &=0.04162,

p=0.1910kg/m3, f=2.3620x 10° N/m?deg™', K =0.3000 x 10> Wm™"'deg™"
®*=1.9890 x 10351

In general, the secular equations are complex polynomial equations and hence provide us complex phase velocities at
first instant. All the modes are found to be dispersive and attenuated in character. The computations have been carried out
to compute phase and group velocities and attenuation coefficients of various modes of wave propagation in case of CT, LS
and GL theories of thermoelasticity correct upon four decimal places here.

If we write

cl=v1+in1Q (35)

so that n=R+iQ, whereR=w/V, V, Q, ® are real numbers.

The real phase speeds (V;) and attenuation coefficients(Q;) can be obtained from the complex phase velocity (c;) by using
representation (35). The Characteristic equations (21) and (26) have been solved by using Graeffe’s root squaring method
[25] with the help of MATHCAD software. This method has two major advantages over the other methods namely: firstly it
requires no prior information about the roots of an equation and secondly it is capable of giving all the roots at a time. The
various computed quantities have been normalized with their corresponding values in case of coupled thermoelasticity (CT).

The variations of phase(V;, i=1,2,3,4,5) and group(Vg, i=1,2,3,4,5) velocities of extensional modes in elastic
(isothermal and isentropic) plate with wavenumber (Rh) are presented in Figs. 1 and 2, respectively. The variations of
phase and group velocities of different modes of propagation in thermoelastic plate are presented in Figs. 3 and 4. The
variations of phase and group velocities of extensional modes of (isothermal and isentropic) elastic plate are similar to that
of thermoelastic plate as observed from Figs. 1-4 with the exception that the magnitudes of phase velocities of various
wave modes in coupled thermoelastic plate are small as compared to that in elastic plate (isothermal or isentropic) at all
wavelengths. The phase velocity (V) of fundamental mode of extensional motion decreases from a value greater than
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0
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Fig. 1. Phase and group velocities of extensional modes in isothermal elastic plate versus wavenumber (Rh).
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Fig. 2. Phase and group velocities of extensional modes in non-conducting (isentropic) elastic plate versus wavenumber (Rh).
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158 kmy/s towards the thermoelastic Rayleigh wave velocity with increasing wavenumber as observed from Fig. 3, whereas
in elastic plate it becomes close to Rayleigh wave velocity as can be seen from Figs.1-2. The phase velocity of higher
extensional modes attain quite large values at vanishing wavenumber which sharply slash down to become steady and
asymptotically close to shear wave velocity at extremely large wavenumbers. The group velocities of various modes are
found to be zero at vanishing wavenumbers which correspond to the condition of zero energy transmission. The group
velocity of various extensional modes of wave propagation both elastic (isothermal or isentropic) and thermoelastic plates
increase monotonically in the interval 0 < Rh <1 and tend to phase velocity profiles of respective modes at high frequency
limits. Group and phase velocity profiles coincide at higher values of the wavenumber (Rh) in both elastic and
thermoelastic plates. The trends of variation of phase velocity of extensional modes in thermoelastic plate are found to be
quite similar to that reported by Achenbach [22] and Graff [26] in elastokinetics except some modifications due to the
thermomechanical coupling. According to Sharma et al. [23], at low frequencies mechanical energy transfer is more
dominant than thermal conduction and hence at low frequency limits the wave-like modes are identified with the small
amplitude waves in elastic material that does not transport heat. These may be regarded as inherent in the classical
elastodynamics derived strictly from mechanical principles. Thus the behavior and character of all the existing possible
modes of extensional motion of the thermoelastic and elastic plates are similar.

The phase and group velocities of flexural wave modes in elastic (isothermal/isentropic) and thermoelastic (CT) plates
for different values of wavenumber (Rh) are plotted in Figs. 5-8. It is noticed that the magnitudes of phase and group
velocities of various wave modes in coupled thermoelastic plate have small magnitudes as compared to that in elastic plate
under isothermal or isentropic conditions at all wavelengths. The phase velocity (V;) of fundamental mode of flexural
motion increases from zero value towards the classical thermoelastic Rayleigh wave velocity with increasing wavenumber
as observed from Fig. 7 in contrast to that in elastic plate where it becomes close to Rayleigh wave velocity as can be seen
from Figs. 5 and 6. The phase velocities of higher flexural modes attain quite large values at vanishing wavenumber which
sharply slash down to become steady and asymptotically closer to shear wave velocity at extremely large wavenumbers.
The group velocities of various modes are found to be zero at vanishing wavenumber which corresponds to the condition
of zero energy transmission. The group velocity of various flexural modes of wave propagation both elastic and
thermoelastic plates increase monotonically in the interval 0 <Rh <1 and tend to phase velocity profiles of respective
modes at high frequency limits. Figs. 9 and 10 show the variations of dimensional attenuation coefficients of extensional
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Fig. 6. Phase and group velocities of flexural modes in isothermal elastic plate versus wavenumber (Rh).



520 J.N. Sharma et al. / Journal of Sound and Vibration 330 (2011) 510-525

500

400 -

300

200

Phase Velocity (km/s)

100

400 -
—~ 300
E k
= /
) N
5 I 7\
8 7 _
% 200 / ’/ \\),,_\ '/. \'\ ””
= NN
g // 2
© 100/ 7 N
/ — _
/
0 : : ‘ |
0 1 2 3 4 5 6

Rh

Fig. 8. Group velocity of flexural modes versus wavenumber (Rh) for CT theory.

and flexural motions versus wavenumber in the context of CT theory of thermoelasticity respectively. The
trends of variations of phase velocity of flexural motion in thermoelastic plate are also found to be quite similar to that
reported by Achenbach [22] and Graff [26] in elastokinetics except some modifications due to the thermomechanical
coupling.

Tables 1-3 show the variations of phase velocities (V]', i=1,...,6), group velocities (Vg, i=1,...,6) and attenuations
coefficients (Q', i=1,...,6) of extensional and flexural modes with respect to wavenumber (Rh). Here normalization of
quantities has been done with their corresponding values in classical (CT) thermoelasticity so thatV!=Vf/V,
Vi =VE/VeT and Q' =Qf /Qf"(i=1, ..., 6), where F stands for LS or GL in case of respective non-classical theory of
thermoelasticity. Tables 1 and 2 reveal that there are significant deviations in magnitudes of phase and group velocities of
extensional and flexural wave modes in non-classical theories (LS, GL) from that of classical (CT) theory. It is observed from
Table 1 that the magnitude of phase velocity (V) and group velocity (V) of fundamental mode of vibration is less than
unity in low and high frequency regime. Thus the thermal relaxation time contributes in decreasing the magnitudes of
phase and group velocities of extensional modes. The magnitudes of phase velocities (V§, V} ,VZ, V{)and group velocities
(Vg Vg, Vg)are greater than unity at low frequency regime and less than unity at high frequencies. However, the
magnitudes of phase velocity (V§) and group velocity (V) are less than unity at low frequencies and greater than unity at
high frequency regime for both extensional and flexural motions of the plate in context of GL and LS theories of
thermoelasticity.
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Fig. 9. Attenuation coefficients of extensional motion versus wavenumber (Rh) for CT theory.
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Fig. 10. Attenuation coefficients of flexural motion versus wavenumber (Rh) for CT theory.

In Table 2, the variations of phase velocity (V]', i=1,...,5) and group velocity (Vg, i=1,...,5) of all the flexural modes
versus wavenumber (Rh) in the context of generalized theories (GL, LS) of thermoelasticity have been shown. It is observed
that the magnitudes of phase velocities (Vi, V3, Vi, VI)and group velocities (Vg, V7, Vg, Vg )are greater than unity.
Thus, the thermal relaxation time contributes in increasing the magnitudes of phase and group velocities of various modes
of vibrations. The magnitudes of phase velocity (V3) and group velocity(V,) are noticed to be less than unity at all the
wavelengths for flexural motion except at certain wavelengths. It can be concluded that thermal relaxation times result in
decrease of phase and group velocities of extensional wave modes in contrast to flexural one in which case these quantities
increase with relaxation times.

The attenuation coefficients (Q', i=1,...,6) of all the wave modes of extensional and flexural motion versus
wavenumber (Rh) are shown in Table 3. It is noticed that the magnitude of attenuation coefficient (Qf') of fundamental
mode is less than unity for extensional motion and it is greater than unity in case of flexural motion at all the wavelengths.
The attenuation coefficients (Q}, Qf)of extensional modes have magnitudes greater than unity at low frequencies but less
than unity at high frequency regime for both GL and LS theories of thermoelasticity. The attenuation coefficient (Q3)of
flexural motion has magnitude less than unity at low and high frequency regime except at certain wavelengths. The
magnitude of attenuation coefficient (Qf)of extensional mode is less than unity and that of flexural mode is greater than
unity at low frequency regime and vice-versa at high frequencies. The magnitudes of attenuation coefficient(Q}) of
extensional and flexural modes are less than unity at low frequency regime and greater than unity at high frequencies
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Table 1
Phase (V') and group (V) velocities of extensional modes versus wavenumber (Rh).

Rh vy v v Vi vy v v v vz v v v
GL
0 0.9953 0 1.0041 0 0.9961 0 1.0000 0 1.0263 0 1.0000 0
1 0.9952 0.9955 1.0040 1.0048 0.9958 0.9955 0.9980 1.0000 1.0000 0.8879 1.0061 1.1268
2 0.9955 0.9942 1.0048 0.9844 0.9955 1.0065 1.0000 1.0086 0.8879 1.0856 1.1268 0.8957
3 0.9956 0.9938 0.9950 0.9958 1.0009 1.0008 1.0047 1.0024 0.9941 0.9946 1.0045 1.0105
4 0.9954 0.9981 0.9953 0.9960 1.0009 1.0008 1.0041 1.0048 0.9943 0.9874 1.0066 1.0063
5 0.9958 0.9959 0.9955 0.9929 1.0008 1.0008 1.0043 1.0047 0.9925 1.0018 1.0065 1.0063
6 0.9958 0.9958 0.9949 0.9949 1.0008 1.0008 1.0043 1.0043 0.9944 0.9944 1.0065 1.0065
LS
0 0.9958 0 1.0041 0 0.9968 0 1.0000 0 1.0263 0 0.9737 0
1 0.9954 0.9955 1.0040 1.0048 0.9958 0.9955 1.0000 1.0000 1.0000 0.8898 1.0030 1.1241
2 0.9955 0.9965 1.0048 0.9861 0.9955 1.0065 1.0000 1.0086 0.8898 1.0876 1.1241 1.0243
3 0.9954 0.9955 0.9958 0.9965 1.0009 1.0008 1.0047 1.0024 0.9961 0.9964 1.0747 0.8903
4 0.9954 0.9980 0.9961 0.9967 1.0009 0.9976 1.0041 1.0048 0.9962 0.9964 1.0022 1.0105
5 0.9958 0.9930 0.9962 0.9935 1.0000 1.0000 1.0043 1.0048 0.9962 1.0054 1.0043 1.0042
6 0.9954 0.9954 0.9956 0.9956 1.0000 1.0000 1.0043 1.0043 0.9981 0.9981 1.0043 1.0043
Table 2

Phase (V') and group (V) velocities of flexural modes versus wavenumber (Rh).

Rh 4 Vg, v Vg, 4 Ve, vy Vg, v Vg

GL

0 0.9956 0 1.0002 0 0.1000 0 1.0000 0 0.9961 0

1 1.0026 1.0022 0.9891 0.9889 1.0000 1.0025 1.0112 1.0000 0.9808 0.0105
2 1.0022 1.0038 0.9889 0.9871 1.0024 0.9955 1.0000 1.0000 1.0105 1.0107
3 1.0028 0.9966 0.9882 0.9977 0.9981 1.0060 1.0000 1.0000 1.0106 1.0106
4 1.0017 0.9990 0.9914 0.9982 1.0025 1.0084 1.0000 0.9953 1.0106 1.0555
5 1.0013 1.0069 0.9934 0.9978 1.0049 0.9957 0.9985 0.9987 1.0215 1.0215
6 1.0025 1.0025 0.9945 0.9945 1.0028 1.0028 0.9986 0.9986 1.0215 1.0215
LS

0 0.9955 0 1.0002 0 1.0000 0 1.0000 0 0.9964 0

1 1.0019 1.0026 0.9887 0.9882 1.0000 1.0000 1.0112 1.0000 0.9808 1.0000
2 1.0026 1.0032 0.9882 0.9861 1.0000 0.9970 1.0000 1.0000 1.0000 1.0000
3 1.0028 1.0000 0.9874 0.9969 0.9981 1.0060 1.0000 0.9970 1.0000 1.0000
4 1.0023 1.0000 0.9906 1.0000 1.0025 1.0084 0.9984 0.9988 1.0000 1.0000
5 1.0019 1.0075 0.9934 0.9978 1.0049 0.9957 0.9985 0.9987 1.0000 1.0555
6 1.0031 1.0031 0.9945 0.9945 1.0028 1.0028 0.9986 0.9986 1.0106 1.0106

except at certain wavelengths. The magnitudes of attenuation coefficient (QZ)of extensional and flexural modes are
magnitude greater than unity at all the wavelengths with same except at certain wavelengths.

10. Conclusions

The asymptotic operator plate model for free vibrations; both extensional and flexural, in a homogenous thermoelastic
plate leads to sixth and fifth degree secular equations, respectively, that governs frequency and phase velocity of various
possible modes of wave propagation at all wavelengths. Numeric computation to find phase velocity, group velocity and
attenuation coefficient have been done by using MATHCAD software by using Graffe’s root squaring method solve
polynomial equations with complex coefficients. The infinite power series expansions of classical thermoelastic Rayleigh-
Lamb frequency equation and secular equations obtained with operator plate model are found to be in close agreement up
to the approximations of order o(5'%). It is observed that the non-trivial roots are almost same in case of both the
techniques. Phase velocity of fundamental extensional and flexural wave modes in thermoelastic plate approach to
thermoelastic Rayleigh wave and classical Rayleigh wave velocity at large wavenumbers, respectively. It is noticed that the
thermal relaxation times have significant effect on low-frequency waves in the limiting case which supports the conclusion
that the “second sound” effects are short lived. The group velocity profiles of all the wave modes approach to the phase
velocity profiles of respective modes at short wavelengths for both extensional and flexural motions of the plate. Moreover,
the phase and group velocities have same magnitudes in case of non-dispersive wave modes. Higher waves modes are
more attenuated than the fundamental and second modes of wave propagation. It is also observed that the flexural wave
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Table 3
Attenuation coefficients (Q") of extensional (E) and flexural (F) modes versus wavenumber (Rh).

R Q % ¥ i % %
E F E F E F E F E F E

GL

0 0.9958 0.9960 1.0042 0.9048 0.9948 1.0119 1.0845 1.0166 1.3826 1.0000 1.0000
1 0.9953 1.0232 1.0039 0.9970 0.9962 1.0102 0.9889 1.0000 1.0000 0.9949 1.0000
2 0.9955 1.0176 1.0049 0.9971 0.9958 1.0076 0.9400 0.9973 1.1862 1.0111 0.8416
3 0.9955 1.0168 0.9954 0.9977 1.2000 1.0157 1.0051 0.9944 1.0117 1.0103 0.9902
4 0.9959 1.0135 1.0340 1.0011 1.0070 0.9926 1.0045 1.0104 1.0072 1.0390 0.9905
5 0.9957 1.0072 0.9950 0.9972 1.0517 1.0000 1.0047 1.0182 0.6101 1.0000 0.9906
6 0.9954 1.0042 0.9943 0.9971 1.0606 1.0075 1.0047 1.0476 1.0069 1.0099 0.9861
LS

0 0.9958 0.9960 1.0042 0.8965 0.9961 1.0119 1.0806 1.0047 1.3842 1.0042 1.0000
1 0.9956 1.0025 1.0039 0.9970 0.9962 1.0102 0.9889 0.8474 1.0000 0.9949 1.0000
2 0.9955 1.0197 1.0042 0.9971 0.9958 1.0076 0.9800 0.9973 1.1808 1.0111 0.8461
3 0.9955 1.0179 0.9954 0.9973 1.1333 1.0157 1.0042 0.9962 1.0078 1.0000 1.2683
4 0.9955 1.0145 1.0349 1.0005 1.0465 0.9926 1.0045 1.0104 1.0036 1.0000 0.9953
5 0.9953 1.0080 1.0446 0.9966 1.0172 1.0000 1.0047 1.0182 0.6101 1.0000 0.9953
6 0.9954 1.0056 0.9951 0.9965 1.0303 1.0075 1.0047 1.0000 1.0069 1.0000 0.9954

modes are less attenuated than extensional one. The thermal variations result in reduction of phase and group velocities of
the wave modes because of their attenuating character. The asymptotic differential equations which govern flexural and
extensional motions can be written from the respective frequency equations obtained here without any difficulty as was
done by Losin [15,16] though order of equations will be higher here. Operator plate model approximates thin and thick
plates structures more accurately than the other methods. Because it allows elimination of restrictions due to the
convergence interval for the infinite matrix series and permits applicability of the model for short and long wavelength
limits. Moreover, the derived dispersion relations give good approximations without any correction factors as in the
Reissener-Mindlin theory.
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Appendix

The quantities a;, b;, d; (i=1, 2, 3) and q; (i=1, 2, 3, 4, 5) used in Eq. (21) are defined as

a = 4(5472 +£101 52‘6171),

ay = 45°[0% (0% +5)—104277 &1 {7+ 6*(1-26°~170)}]-16 (A1)

a3 =1+56*Q26%+1-17'e1), by =217'61001(106%—d1),
by = —1077"'1061 (100 + 1) (A2)
by = —2171610[1+0%(010 *(to® +5)+T0—1}], di =3+28°(1-T9—&1) (A3)
dy = 45°[1-10 +5(0°19—2)], d3 = 10+5%[5(1—T0)+20%*{1 +1o(To—6)}] (A4)
@1 =0"B+70(1-66")—17"e1], g2 =—5"[t03—70)+ 77" &1(1-270)] (A5)
qs = 2[0° {17 '61(3—50%)+270(8—150%) +5(2 + %)} 5] (A.6)
G4 = 0%[10{6*(37-1056%)—10}+ 1077 &1 {14 196*(1-20%)}—50%] (A7)
g5 = 0°[10(5—1070 +70?) +77 &1 {1 +370(To—4)}] (A.8)

The quantities B; (i=1 to 7) and p; (i=1 to 10) used in Eq. (26) are given as
By = mg(p2 +P3)+ M7 (P2 +71)+D3(45> ~3)]+ 2405 *[myps—msps—1071 (2p7—ms3pe) (A9)
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By = 20{p26° 4 p3(30> —1)—4ms(56° —1)}—mep; —m7 (p1 —f2)
B3 = m7); +(45°—3)(p2 +P3)]+2405*[ps(1 +My) + (M5 —Maps)—105T (2p7—M3pe)]

By =mg(p1—7)5)—m7), +(452—3)P1 +20{(y; +3m, -4—96m5—120m4)62 +Pp3ys—my+24
Bs = 5 11—0 ma +352)+52{11—0 +Pamis +2407,—144¢, 52(2—52)} +p3—48y4}

Be = 0°[3(p2 +71)—)1Me—40% (P2 +71)]—24[pa—May; +2podti]
By =2406%(4m4—5)+7,(30° ~1)+ P27 +24+0.05{mgy, —(45° ~3)(p1—7,)}

Po=28%61(1-582+26%), p1=288[—1+*(to+£1)],
P2 = 24[6—m; +25%{((76°—10)79 +¢&1}]

p3 = 24[1 +52T0(T052—6)—8](1 —6572 +270)],
Pa=40%[16+062{136°—37 +&,(1+25%)}]

ps = 0%[234-5*(11-5052 + &1(2+95H)],
pe =177 82+ 0*{(5+70)-140 ]

p7=6177'0"(1470—407%), pg=28"11(140 >+ 70+ —31),
ps =25°11(146 2 + 19 +&1-31)

piro=—-8811(56°-2), 7, =192(3-25°),
7, =576(2—8%), 73 =—£17;'0(2—6%)

P4 =0%(To+&1), P5=3-20% 75=20"—1, 7, =8[5(1+6%-126"]
The quantities r; (i=1 to 10) and @; (i=2, 4) utilized in Eq. (34) are defined as
r1 = —100% + 7, (19-246% +200,) + 0, [31-12(26° + §,)] + P,[10—435> +12(¢, +20,)]

ry = 5—685° +40,(4—60%)+8(4(8—30°)+ 4, (1728516, + 120, —9¢,)
13 = =106 + @, (19-24% +20%,) + @4[31—-12(25° + @,)] + 9, [10—435> +12(¢, +2¢,)]
Iy = —410% +14+40,01 +40 (51 +4)+ P[25—40% +16(, +01—27,)]
15 =150 —1+80,—2( (40, + 5)+ P,[136° =238 + 20, (4P, —5)—8¢,]
16 = —20% + 540,01 + P42 +501)+ Py (2—65% + 20 + 50, —4P,)

17 =396%—6+40,(0° +3)+ 440> —3)— 0, (39—36° +24¢, + 2, + 363,)
rg = 1802 —1+0,(120% +49) + 0, (126° ~1)—=3¢,(6—135* + 120, +4¢,,)

ro =36 +3,(6+ 135 + 120, 0,) + 04 (136° ~6)—,(3—185” +12¢, + 139,

r10 = (14 60° + )+ 94652~ 1)+ 0, (35”20, —6)
@;=0(d+b), @,=0"db, i=2 4
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