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In this paper the asymptotic method has been applied to investigate propagation of

generalized thermoelastic waves in an infinite homogenous isotropic plate. The

governing equations for the extensional, transversal and flexural motions are derived

from the system of three-dimensional dynamical equations of linear theories of

flexural free vibrations in a homogenous thermoelastic plate leads to sixth and fifth

degree polynomial secular equations, respectively. These secular equations govern

frequency and phase velocity of various possible modes of wave propagation at all

wavelengths. The velocity dispersion equations for extensional and flexural wave

motion are deduced from the three-dimensional analog of Rayleigh–Lamb frequency

equation for thermoelastic plate. The approximation for long and short waves along

with expression for group velocity has also been obtained. The Rayleigh–Lamb

frequency equations for the considered plate are expanded in power series in order

to obtain polynomial frequency and velocity dispersion relations and its equivalence

established with that of asymptotic method. The numeric values for phase velocity,

group velocity and attenuation coefficients has also been obtained using MATHCAD

software and are shown graphically for extensional and flexural waves in generalized

theories of thermoelastic plate for solid helium material.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of thermoelastic waves is well established [1]. The governing field equations in classical dynamic coupled
thermoelasticity are wave-type (hyperbolic) equation of motion and diffusion-type (parabolic) equation of heat
conduction. It is seen that a part of the solution of energy equation extends to infinity. This means that a part of the
disturbance has an infinite velocity of propagation, which is physically unrealistic. The non-classical theories of
thermoelasticity have been developed to overcome this drawback. Lord and Shulman [2] incorporated a flux-rate term in
Fourier’s law of heat conduction in order to formulate a generalized theory that admits finite speed for thermal signals.
Green and Lindsay [3] also included a temperature rate term among the constitutive relations to develop a temperature
rate dependent thermoelasticity that does not violate the classical Fourier’s law of heat conduction when the body under
consideration has a center of symmetry. This theory also predicts a finite speed of heat propagation. According to these
generalizations, heat propagation should be viewed as a wave phenomenon rather than a diffusion one. A wave-like
thermal disturbance is referred to as ‘second sound’ by Chandrasekharaiah [4]. These theories are also supported by
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experiments which exhibited the actual occurrence of second sound at low temperatures and small intervals of time.
Researchers such as [5–7] experimentally proved for solid helium that thermal waves (second sound) propagating with
finite, though quite large, speed also exist. Sharma et al. [8] and Sharma [9] investigated the propagation of thermoelastic
Rayleigh–Lamb waves in homogeneous isotropic plates in the context of conventional coupled thermoelasticity (CT) and
generalized theories of thermoelasticity under different conditions.

Kirova et al. [10] have studied the asymptotic behavior for linear and nonlinear waves in viscoelastic materials.
Ryabenkov and Faizullina [11] proved that asymptotic method is identical with method of hypothesis and successive
approximations for slabs and plates. Agalovyan and Gevorkyan [12] solved first boundary-value problem for forced
vibrations of an isotropic strip by an asymptotic method. Gales [13] studied asymptotic spatial behavior of solutions in
thermoelastic solids. Gevorgyan [14] investigated the thermoelastic wave propagation in a transversely isotropic heat
conducting and non-heat conducting elastic materials. Losin [15,16] studied the asymptotic of flexural and extensional
waves in homogeneous isotropic elastic plate. Losin [17] established the equivalence of dispersion relations obtained from
operator plate model and Rayleigh–Lamb frequency equation. Sharma et al. [18] investigated the flexural and transversal
wave motions in homogeneous isotropic thermoelastic plates by using asymptotic method. The authors [15,16] and [18]
used the asymptotic method applied by Protsenko [19] for thin n-shelled structures in their investigation on elastic and
thermoelastic plates, respectively. Moreover, it is pertinent to mention here that the dispersion relations reported in the
works of Losin [15,16] were of sixth degree polynomial equations in frequency/phase velocity instead of tenth degree as
reported in [18]. However, the corresponding equivalence relations obtained by Losin [17] in case of symmetric
(extensional) and skewsymmetric (flexural) motions of elastic plate are also tenth degree polynomial equations in phase
velocity (see terms under the braces of Eqs. (7) and (14) in [17]). Equivalence of these relations has been established by
considering terms up to eighth power of Z=nh.

Owing to the technological advances in recent years, plate elements are commonly selected as design components in
many engineering structures, especially in the aerospace, marine and construction sectors, because of their ability to
resist loads. With the evolution of light plate-structures, tremendous research interests in the vibration of the plates
are generated. The negligence of considering vibration as a design factor can lead to excessive deflections and failures.
The vibration design aspect is even more important in micro-machines such as electronic packaging, micro-robots, etc.
because of their enhanced sensitivities to vibrations. The dynamical problems of the theory of elasticity become
increasingly important due to their application in diverse fields. The high velocity of modern aircrafts gives rise
to aerodynamic heating, which produces intense thermal stresses that reduce the strength of the aircraft structure.
Keeping in view the above facts and physically realistic nature of non-classical (generalized) thermoelasticity, the
present work is an attempt to find a frequency and velocity dispersion relation from three-dimensional analog of the
Rayleigh–Lamb frequency equation that would be sufficient for extensional and flexural wave motion in generalized
thermoelastic plates. The analysis is based on the approach and asymptotic method of Prosenko [19] used in
Refs.[15,16,18] with modification that the approximate matrix inversion by Neumann’s series has been replaced by
actual matrix inversion. This modification is found very effective as it eliminates restrictions due to the convergence
interval for the infinite matrix series and permits the model to be applicable for long and short wave asymptotics in any
material [15].
2. BASIC equations and constitutive relations

The constitutive relations and equations governing linear generalized thermoelastic interaction in a homogenous
isotropic solid are as follows:

The strain–displacement relations

eij ¼
1

2
ui,jþuj,i

� �
, i, j¼ 1,2,3 (1)

The stress–strain temperature relations

rij ¼ ledijþ2meij�b Tþt1d2k
@T

@t

� �
dij, i, j¼ 1,2,3 (2)

The equations of motion

@rij

@xj
¼ r @

2ui

@t2
; i, j¼ 1,2,3 (3)

The equation of heat conduction

Kr2T�rCe
@T

@t
þt0

@2T

@t2

 !
�bT0

@

@t
þt0d1k

@2

@t2

 !
eþ 1þt0

@

@t

� �
Q ¼ 0 (4)

where eij and rij are the components of strain and stress tensors, respectively; u=(u1, u2, u3) is the displacement vector,
e¼rU u

!
is the dilatation, r is del operator, r is the density, Ce is the specific heat at constant strain. T is the change of



J.N. Sharma et al. / Journal of Sound and Vibration 330 (2011) 510–525512
temperature from reference temperature T0; l, m are Lame’s constant, K is the thermal conductivity, t0, t1 are thermal
relaxation times, dij and Q are Kronecker delta and heat source term, respectively and b=(3l+2m)at ,at being coefficient of
linear thermal expansion. dik, i=1,2 is Kronecker delta; where k=1 corresponds to Lord–Shulman (LS) and k=2 corresponds
to Green–Lindsay (GL) theory of generalized thermoelasticity. According to Strunin [20] the inequalities t0Zt1Z0 of Green
[21] obeyed by the thermal relaxation time are not mandatory.

3. Formulation of the problem

We consider wave motion in homogenous isotropic thermoelastic plate of thickness 2h initially at uniform temperature
T0 in the undistributed state. The origin of Cartesian coordinate system ‘oxyz’ is taken at any point ‘o’ in the middle plane of
the plate and z-axis is pointing along the thickness of the plate. We assume that the plate is infinite in x and y directions
which thus occupies the region

O¼ f�1ox, yo1, �hrzrhg

In the region O, the basic governing equations (3) and (4) in non-dimensional form, in the absence of body forces and
heat sources, become

@2

@x2
þd2 @2

@y2
þ
@2

@z2

 !( )
uþð1�d2

Þ
@2v
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þ
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@2u
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(5)
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where we have used the following non-dimensional quantities

ðxu, yu, zuÞ ¼
o�

c1
ðx, y, zÞ; ðuu, vu, wuÞ ¼

ro�c1

bT0
ðu,v,wÞ;

T u¼
T

T0
; tu¼o�t; tu1 ¼o�t1; tu0 ¼o�t0; hu¼

o�h
c1

; c2
1 ¼

lþ2m
r ; c2

2 ¼
m
r ;

d2
¼

c2
2

c2
1

¼
m

lþ2m
; e¼ b2T0

rceðlþ2mÞ
; o� ¼ ðlþ2mÞce

K
; ruij ¼

rij

bT0
(9)

Here e is thermoelastic-coupling constant, u, v, and w are displacement components, and c1, c2 are the velocities of
longitudinal and transverse waves, respectively. In Eqs. (5)–(8) and in the following analysis, the primes have been
suppressed for convenience unless stated otherwise.

The surfaces z= 7h of the plate are assumed to be stress free and thermally insulated. Therefore, the non-dimensional
boundary conditions to be satisfied are given as

d2 @u

@z
þ
@w

@x

� �
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d2 @v

@z
þ
@w

@y

� �
¼ 0

ð1�2d2
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þ
@w
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� 1þd2kt1

@

@t
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T ¼ 0

@T

@z
¼ 0 (10)

4. Solution of the problem by asymptotic method

We assume harmonic wave solution of the form

ðu, T , v, wÞðx, y, z, tÞ ¼ u
!
ðzÞ expf�ið r

!
Un
!
�otÞg (11)

where u
!
ðzÞ ¼ ðUðzÞ, yðzÞ, VðzÞ, WðzÞÞ is amplitude vector, o is the circular frequency depending on the wavenumber

n
!
¼ ðn1, n2Þ and position vector r

!
¼ ðx, yÞ.
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Using solution (11) in governing equations (5)–(9) and boundary conditions (10), we obtain

d2

dz2
�Q̂ 1

d

dz
�R̂1

 !
u
!
ðzÞ ¼ 0

!
, in the domain O (12)

rðz, nÞ ¼
d

dz
�Ŝ1

� �
u
!
ðzÞ ¼ 0

!
, on z¼ 7h (13)

where Q̂ 1 ¼ nQ 1, R̂1 ¼ n2R1, Ŝ1 ¼ nS1

Q 1 ¼ ðqijÞ4�4, R1 ¼ ðrijÞ4�4, S1 ¼ ðsijÞ4�4 (14)

are 4�4 order matrices and rðz, nÞ ¼ d�2sxz T,z d�2syz szz

h it
is thermal stress vector.

Here the non-zero elements of matrices Q1, R1 and S1 are given as

q14 ¼ in1ðd
�2
�1Þ, q24 ¼�ecotu0, q34 ¼ in2ðd

�2
�1Þ, q41 ¼ in1ð1�d

2
Þ, q42 ¼�ict1,

q43 ¼ in2ð1�d
2
Þ, r11 ¼ d�2n2

1þn2
2�d

�2c2, r12 ¼�t1n1cd�2, r13 ¼ n1n2ðd
�2
�1Þ,

r21 ¼�ion1ectu0, r22 ¼ n2
1þn2

2þt0c2, r23 ¼�ien2cotu0, r31 ¼ ðd
�2
�1Þn1n2, r32 ¼�t1n2cd�2,

r33 ¼ n2
1þd

�2n2
2�d

�2c2, r44 ¼ d2
ðn2

1þn2
2Þ�c2, s14 ¼ in1, s34 ¼ in2, s41 ¼ ið1�2d2

Þn1,

s42 ¼�it1c, s43 ¼ ið1�2d2
Þn2

where

tu0 ¼ io�1�t0d1k; t1= io�1
�t1d2k, t0= io�1

�t0, n1 ¼ n1=n, n2 ¼ n2=n, n¼ 9n
!9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1þn2
2

q
, n
!
¼ n n̂, n̂¼ ðn1, n2Þ,

c
!
ðn
!
Þ¼ x!ðnÞ=n is the phase velocity and c is the phase speed of a traveling wave and n is the unit direction vector.

For waves propagating along x-axis, ðn1, n2Þ ¼ ð1, 0Þ and hence Eqs. (12) and (13) become

d2

dz2
�Q �

d

dz
�R�

 !
u
!
ðzÞ ¼ 0

!
, in the domain O

rðz, nÞ ¼
d

dz
�S

� �
u
!
ðzÞ ¼ 0

!
, on z¼ 7h

where the matrices Q*, R* and S can be obtained from Q1, R1 and S1 defined in Eq. (14) by settingðn1, n2Þ ¼ ð1, 0Þ.
Employing finite asymptotic expansions [18] for r(z, n) and eliminating higher order derivatives, we obtain

Iþ
h2n2

2
Aþ

h4n4

24
B

� �
u
!ð1Þ
ð0Þ�n S�

h2n2

2
C�

h4n4

24
N

� �
u
!
ð0Þ ¼ 0

!
(15)

Q ��Sþ
h2n2

6
Eþ

h4n4

120
F

� �
u
!ð1Þ
ð0Þ�n R��

h2n2

6
G�

h4n4

120
H

� �
u
!
ð0Þ ¼ 0

!
(16)

where u
!ð1Þ
ð0Þ ¼ d u

!

dz

� �
z ¼ 0

A¼ R�þðQ ��SÞQ �, B¼ GþEQ �, C¼ ðQ ��SÞR�,

E¼ CþAQ �, F¼ BQ �þN, G¼ AR�, H¼ BR�, N¼ ER�

It is noticed that the matrices A and B have block diagonal structures of the type

A¼
Að1Þ1 O

O A2

" #
, B¼

B1 O

O B2

" #

whereA1 ¼ ðaijÞ2�2, B1 ¼ ðbijÞ2�2, A2 ¼ diag a33, a44ð Þ, B2 ¼ diagðb33, b44Þ.
Here the elements of these matrices are given below:

a11 ¼ 3�2d2
�v2

s , a12 ¼�2dt1vs, a21 ¼ e1t�1
1 dðd2

�2Þvs, a22 ¼ 1þd2
ðt0þe1t�1

1 e�1Þv2
s ,

a33 ¼ 1�v2
s , a44 ¼�1þ2d2

�d2v2
s , b11 ¼ 5�4d2

�m1v2
s þv4

s ,

b21 ¼ e1t�1
1 dvs 2ð2d2

�3Þ�m2v2
s

h i
, b12 ¼�4dt1vs�2t1dm3v3

s , b22 ¼ 1þm4v2
s þm5v4

s ,

b33 ¼ ð1�v2
s Þ

2, b44 ¼ 4d2
�3�m6v2

s þm7v4
s , vs ¼

c

d
, m1 ¼ 2d2

ð2d�2
�1Þð1�xt1d

2
Þ,

m2 ¼�2þd2
½2t0þe1ð2�d

2
Þþd2

ð1�t0Þ�, m3 ¼ d2
½ðt0�1Þþe1�, m4 ¼ 2d2

ðt0þ2e1Þ,

m5 ¼ d4
½t0

2þe1ðt0�1Þ�, m6 ¼ 2½�1þd2
ðd1�e1d

2
Þ�, m7 ¼ d4

ð1�e1Þ, d1 ¼ 1�d2, d1 ¼ 1þd2, e1 ¼ iotu0t1e

Noting that the coefficient of u
!ð1Þ
ð0Þ in Eq. (15) is a non-singular square matrix of order four, one can obtain the

resolving operator from Eqs. (15) and (16) as

P u
!
ð0Þ ¼ P0þP2

h2n2

6
þP4

h4n4

120

� �
u
!
ð0Þ ¼ 0

!
(17)
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where

P0 ¼R�þðQ ��SÞM�1S,

P2 ¼GþEM�1S�3ðQ ��SÞM�1C,

P4 ¼HþFM�1S�10EM�1C�5ðQ ��SÞM�1N

Here the matrixM¼ ðmijÞ4�4; mij ¼ dijþðh
2n2=2Þaijþðh

4n4=24Þbij, ði, j¼ 1, 2, 3, 4Þ and M�1 is its inverse. The matrix of the
operator P has in general a block diagonal structure of the form

P¼ diagðPL, PS1
, PS2
Þ (18)

thus we have

PL

U

y

� �
¼ 0, PS1

½V � ¼ 0, PS2
½W � ¼ 0

where PL=(pij)2�2, PS1
¼ ðp33Þ1�1 and PS2

¼ ðp44Þ1�1, respectively, govern the extensional, transversal and flexural in plane
motion of the plate. Eq. (17) has a non-trivial solution if and only if determinant

Pj j ¼ 0 (19)

This leads to the secular equations

p11p22�p12p21 ¼ 0, p33 ¼ 0, p44 ¼ 0 (20)

Eqs. (20) are the three-dimensional analog of the Rayleigh–Lamb frequency equations for extensional, transversal and
flexural wave motion of a thermoelastic plate. The second equation in system (20) corresponds to the frequency equation
for transversal wave motion which remains independent of thermal variations and has already been discussed in Sharma
et al. [18]. In the following we confine our discussion to the study of extensional and flexural wave motions in the
generalized thermoelastic plate.

5. Extensional motion of a plate

Because the operator PL affects the displacement U and temperature y only, hence first equation of system (20) governs
the extensional vibrations. According to the structure (17) the operator P, the first equation in the system of equations (20)
provides us the extensional wave phase velocity equation as

e0v12
s þh1v10

s þh3v8
s þh6v6

s þh9v4
s þh12v2

s þh15 ¼ 0 (21)

where h1 ¼ e1þ20e2=n2h2, hj ¼ ejþ20ejþ1=n2h2þ120ejþ2=n4h4,j¼ 3i, i¼ 1, 2, 3, 4, 5
The quantities ej (j=0 to 17) are defined as

e0 ¼�a3q5, e1 ¼ a3q4�a2q5þdt1b3d3, e2 ¼�a3q2þð1þ3d2
Þq5,

e3 ¼ a2q4þa3q3þd3q5�dt1ðb3d2�b2d3Þ,

e4 ¼ a3q1þa1q5�a2q2�ð3d
2
þ1Þq4�dt1ðb1d3þb3d1Þ,

e5 ¼
40

3
ð3d2
þ1Þq2�ðq5þa3g1Þ,

e6 ¼ a2q3þ32d1q5�a3d5�d3q4�12e1d1d
2d3�dt1ðb2d2�16b3Þ,

e7 ¼ a2q1�a1q4�a3d4þd3q2�d2q3þ8d1q5þ2d1d
2e1d3þdt1ðb2d1�b1d2þ4b3Þ,

e8 ¼ q4�a2g1þ4q5d1�a3þ
10

3
ða1q2�q1d2Þþ2e1d1d

2d3þdt1 2b3þ
10

3
b1d1

� �
,

e9 ¼� q3d3þ32q4d1þa2d5þ12e1d1d
2d2þ16dt12b2

h i
,

e10 ¼� q3a1þa2d4�32q2d1þq1d3þ8q4d1�d5d2þ2e1d1d
2
ð6d1�d2Þþ4dt1ð4b1þb2Þ

h i
,

e11 ¼� a2�q3þ4q4d1�g1d3þ
10

3
ðq1a1�8q2d1�d4d2Þþ2e1d1d

2 10

3
d1�d2

� �
þ2dt1 b2þ

20

3
b1

� �� �
,

e12 ¼ d5d3�32q3d1�192e1d1d
2, e13 ¼ a1d5�32q1d1�8q3d1þd4d3�16e2d1d

2,

e14 ¼ 32g1d1�4q3d1þd3�d5þ
10

3
ða1d4�8q1d1Þþ

173

5
e1d1d

2, e15 ¼ 32d1d5,

e16 ¼�256d1ð2d
2
�1Þ, e17 ¼

53

5
d1ð30d2

�11Þ

where d2=1+3d2, d3=16(2d4
�3),d4=6d2

�2,d5=8(5d2
�3)

and ai, bi, di (i=1,2,3), qj (j=1, y, 5) are given in Eqs. (A.1–A.8).
Adopting the procedure of Sharma et al. [18], the frequency equation and group velocity in the present case are obtained as

e0o12
s þh1n2o10

s þh3n4o8
s þh6n6o6

s þh9n8o4
s þh12n10o2

s þh15n12 ¼ 0 (22)
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cg ¼�
1

vs

e1v10
s þh�1v8

s þðh6þh�2Þv
6
s þð2h9þh�3Þv

4
s þð3h12þh�4Þv

2
s þ5h6þh�5

6e0v10
s þ5h1v8

s þ4h3v6
s þ3h6v4

s þ2h9v2
s þh12

� �
(23)

where h�i ¼ 2ejþejþ1=n2h2, j=3i, i=1,2,3,4,5.

5.1. Long and short wavelength waves

In case of long wavelength (nh-0) and short wavelength (nh-N) limits, Eq. (21) reduces to

o8
s e0o4

s þ
e2

h2
o2

s þ
e5

h4

	 

¼ 0 (24)

e0v12
s þe1v10

s þe3v8
s þe6v6

s þe9v4
s þe12v2

s þe15 ¼ 0 (25)

respectively. Eq. (24) clearly has one trivial root of multiplicity four and corresponding phase velocity is

vs ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�d2=ð1þeÞ

q
. The six pairs of roots of Eq. (25) are phase velocities of incoming and outgoing short wavelength

modes which depend on the parameters(e, d) only. Because the roots are, in general complex, therefore waves will be
attenuating in space and dispersive in character.

6. Flexural motion of a plate

Following the procedure of Sharma et al. [18], the phase velocity and group velocity equations, are obtained as

f0v10
s þg1v8

s þg3v6
s þg6v4

s þg9v2
s þg12 ¼ 0 (26)

cg ¼�
1

vs

f1v8
s þg�1v6

s þðg3þg�2Þv
4
s þð2g4þg�3Þv

2
s þð3g5þg�4Þ

5f0v8
s þ4g1v6

s þ3g2v4
s þ2g3v2

s þ2g4

� �
(27)

where g1 ¼ f1þ f2=n2h2, gj ¼ f jþfjþ1=n2h2þfjþ2=n4h4,g�i ¼ 2fjþf jþ1=n2h2, j=3i, i=1,2,3,4.
Here the quantities fj (j=0 to 14) are obtained as

f0 ¼�120d2
ðm7p3þ240e1e�1d4

Þ,

f1 ¼ 120d2
½m7ðp2þp3Þþm6p3�þ2880½m5p5�10m3p7�t�1

1 e1dfm2p9þ10t1d
5
ðm1�3Þg�,

f2 ¼ 6d2
ð20p3d

2
�m7p1þ2880e2d

4
Þ,

f3 ¼�120d2
½B1þe1t�1

1 dfm2p8þ2p9ð2d
2
�3Þþ10t1d

5
ð3m1þ4d2

�7Þg�,

f4 ¼ 6d2B2�576½3ðg4p5þg3p9�10dt1p7Þ�5e1d
4m2þd m3þ60d2

ðg5þ3Þg�,

f5 ¼ 4d2
½144m7�5p1d

2
þ30ðm3þ40d4e1Þ�,

f6 ¼ 120d2
½B3þm6ðp2þb1Þ�240e1t�1

1 d�1
fm2p10þ2p8ð2d

2
�3Þþ10d5t1ð4d

2
�7þ3m1Þg�,

f7 ¼�6d2B4þ1728½p5�p4g4�p8g3þ10p5dt1�þ5760e1d
4
½m2ð1þ3d2

Þþd2
ð2þ9b5Þ�3�,

f8 ¼ 120B5þ576½p5þðm6þm7Þd
2
�,

f9 ¼ 120B6�240e1t�1
1 d½2d2

�3þd5t1ð4d
2
�5Þ�,

f10 ¼�120d2
½B7�1728fp4�d

2
ðt0þe1Þg7þ10p0dt1g�240e1df�5þ6d3g5þ2dð2d2

�3Þg�,

f11 ¼ 576d2
½189�16d2

ð5t0d1þd
2
þ7þe1d1Þ�,

f12 ¼�23040d2
ð3d4
�6d2

þ4Þ, f13 ¼�1152d2
ð432d4

�839d2
þ318Þ

f14 ¼ 64512d2d1

The quantities Bj (j=1, y, 7) and pi (i=1, y, 10) are defined by Eqs. (A.9)–(A.21).

6.1. Long and short wavelength flexural waves

In case of long wavelength (nh-0) and short wavelength (nh-N) limits, Eq. (26) reduces to

o6
s f0o4

s þ
f2

h2
o2

s þ
f4

h4

� �
¼ 0 (28)

f0v10
s þ f1v8

s þ f3v6
s þ f6v4

s þ f9v2
s þ f12 ¼ 0 (29)

respectively. Clearly Eq. (28) has one trivial root (os
2=0) of multiplicity three with corresponding phase velocity equal to

zero and two pairs non-trivial roots. The solution of Eq. (29) gives the phase velocities (vs) of five pairs of incoming and
outgoing wave modes (in general complex) as function parameters(e, d). Hence, the wave motion under consideration in
this case is dispersive and attenuating in character.
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7. Equivalence with thermoelastic Rayleigh–Lamb wave equation

Consider the thermoelastic Rayleigh–Lamb frequency equations for a thermoelastic plate [8], in the context of
generalized theories of thermoelasticity

tanm1h

tanb1h

� �71

�
m1ða2�m2

1Þ

m3ða2�m2
3Þ

tanm3h

tanb1h

� �71

¼
4b1m1n2ðm2

3�m2
1Þ

ðn2�b2
1Þ

2
ða2�m2

3Þ
(30)

where a2 ¼ n2ðc2�1Þ, b2
1 ¼ n2ðc2=d2

�1Þ, m2
1 ¼ n2ða2c2�1Þ, m2

3 ¼ n2ðb2c2�1Þ, a2, b2 ¼ fð1þt0�ioetu0t1Þ7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�t0�ioetu0t1Þ

2
�4ioet0tu0t1

q
g=2.

Here, the positive and negative powers correspond to the flexural and extensional wave modes, respectively. After
expanding all tangent terms into the power series (considering only negative exponent), Eq. (30) takes the form:

c0þ
1

3
h2c2þ

2

15
h4c4þ

2

45
h6c6þ

4

225
h8c8þ � � � ¼ 0 (31)

where

c0 ¼f0ðn
2�b2

1Þ
2
�4n2m2

1m2
3

c2 ¼ ðf2þb
2
1f0Þðn

2�b2
1Þ

2
�4n2m2

1m2
3y2

c4 ¼ ½2ðf4þb
4
1f0Þþ5=3b2

1f2�ðn
2�b2

1Þ
2
�4n2m2

1m2
3ðy4þ5=3m2

1m2
3Þ

c6 ¼ b1
2
½ðy4þm2

1m2
3Þða

2�b2
1Þþy2ðb

2
1a

2�y4Þ�ðn
2�b2

1Þ
2
�4n2m4

1m4
3y2

c8 ¼ b4
1½a

2ðy4þm2
1m2

3Þþy2y4�ðn
2�b2

1Þ
2
�4n2m6

1m6
3,

yi ¼ ðm
i
1þmi

3Þ, f0 ¼ a2�y2, f2 ¼ y2a2�ðy4þm2
1m2

3Þ,

f4 ¼ a2ðy4þm2
1m2

3Þ�y2y4

It can be established that all the coefficients of cn(c,d) are completely identical to those of PL in operator P of Eq. (18)
associated with the extensional motion in the operator plate model. That is we have

cnðc, dÞffiPL
ðnÞ
ðc,dÞ, ðn¼ 0, 2, 4, 6, . . .Þ (32)

This type of motion is governed by the dispersion relation PL(c,d)=0, reproduced here with the corresponding order of
approximation

v2
s Pð0ÞL ðc, dÞþ

1

3
Z2Pð2ÞL ðc, dÞþ

2

15
Z4Pð4ÞL ðc, dÞþ

17

315
Z6PL

ð6Þ
ðc,dÞþ

62

2835
Z8Pð8ÞL ðc, dÞþ � � �

� �
¼ 0 (33)

where Z=hn

Pð0ÞL ðc,dÞ ¼ ðd2
�j2Þvs

4þ½1þ4ðj2�j2�d
2
�v2

s�4d1,

Pð2ÞL ðc,dÞ ¼�ðj4þj2d1þj2�d
2
Þv6

s þ½1�7d2
þ4j2d

�2
þ4j4þj2ð3þ4d1�4j2d

�2
Þ�v4

s ,

�4½1:5�4d2
�j2d

�2
þj4þj2ð3þd1�j2Þ�v

2
s þ12d1,

Pð4ÞL ðc,dÞ ¼ �0:3½j2ð6j4�5d2
Þþðj4þj2Þð5�6d2

Þ�v8
s þ0:3r1v6

s�0:3r2v4
s ,

�0:3½4j2þð7j2þ23d2
�38Þ�40j4þ4j2ð17þ38d2

Þ�31�v2
s þ2:4ð25j2þ14d2

�8Þ,

Pð6ÞL ðc,dÞ ¼ �½ðj4þj4Þd1�j2ðj4�d
2
Þ�v10

s þr6v8
s þr5v6

s þr4v4
s ,

þ2½24d2
�9�16j2�4j2ð5þd1Þ�v

2
s þ20d1,

Pð8ÞL ðc,dÞ ¼ ½ðj2þj4Þd
2
�j2j4�v

12
s �r10vs

10þr9v8
s�r8v6

s þr7v4
s ,

�½36d2
�13þ10j4þ4j2ð3d

2
�9�2j2Þ�v

2
s�12d1Þ (34)

Here the quantities ri (i=1 to 10) and ji ði¼ 2,4Þ are defined by Eqs. (A.22–A.32).
The only difference between Eqs. (21) and (33) is in factors outside the braces. Eq. (33) has an extra trivial solution and

the identity of expressions inside the braces guarantees the equivalence of non-trivial roots for extensional modes.
Similarly after expanding all the tangent functions into the power series (considering only positive exponent), Eq. (30)
takes the form as that of Eq. (42) in Sharma et al. [18]. The resulting equation also has an extra trivial solution and the
identity of expressions inside the braces guarantees the equivalence of non-trivial roots in case of flexural modes.

8. Special cases

In this section the wave motion of elastic plate under isothermal and isentropic (adiabatic) conditions has been discussed.
(a)
 Elastic plate under thermal equilibrium

In the case of uncoupled thermoelasticity (elastic plate), the coefficient of linear thermal expansion vanishes because
the elastic and thermal fields are independent of each other so that b=0 which implies that e=0. The dispersion
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equation (21) for extensional motion reduced to tenth degree polynomial in vs whereas the secular equation (26) for
flexural motion preserves its nature with same degree. These equations provide us five modes of wave propagation
each for extensional and flexural motions of a homogeneous isotropic elastic plate. This is in agreement with Sharma
and Kumar [24]. The Rayleigh–Lamb frequency equation (30) in this case gets reduced to the dispersion relation of
elastic plate waves [22,26] for e=0 and the consequent equivalence of results agree with Losin [17].
(b)
 Elastic plate under isentropic conditions

In this case of thermoelasticity, the coefficient of thermal conductivity vanishes, so that K=0. Consequently the
dispersion equation (21) for extensional motion gets reduced to tenth degree polynomial in vs here in contrast to
the flexural motion given by polynomial equation (26) which preserve its degree and remains similar in nature.
Thus there exist which give five modes of wave propagation for each extensional and flexural motions in a
homogeneous isotropic elastic plate.
9. Numerical results and discussion

For the purpose of numerical illustrations, we consider wave propagation in an infinite, homogenous isotropic,
thermoelastic plate of solid helium material. The physical data of solid helium crystal as reported in Sharma and Kumar
[23] given by

l¼ 0:2120� 1010 N=m2, m¼ 0:1245� 1010 N=m2, e¼ 0:04162,

r¼ 0:1910 kg=m3, b¼ 2:3620� 106 N=m2 deg�1, K ¼ 0:3000� 102 Wm�1 deg�1

o� ¼ 1:9890� 1013 s�1

In general, the secular equations are complex polynomial equations and hence provide us complex phase velocities at
first instant. All the modes are found to be dispersive and attenuated in character. The computations have been carried out
to compute phase and group velocities and attenuation coefficients of various modes of wave propagation in case of CT, LS
and GL theories of thermoelasticity correct upon four decimal places here.

If we write

c�1 ¼ V�1þ io�1Q (35)

so that n=R+ iQ, whereR¼o=V , V, Q, o are real numbers.
The real phase speeds (Vi) and attenuation coefficients(Qi) can be obtained from the complex phase velocity (ci) by using

representation (35). The Characteristic equations (21) and (26) have been solved by using Graeffe’s root squaring method
[25] with the help of MATHCAD software. This method has two major advantages over the other methods namely: firstly it
requires no prior information about the roots of an equation and secondly it is capable of giving all the roots at a time. The
various computed quantities have been normalized with their corresponding values in case of coupled thermoelasticity (CT).

The variations of phaseðVi, i¼ 1, 2, 3, 4, 5Þ and groupðVgi
, i¼ 1, 2, 3, 4, 5Þ velocities of extensional modes in elastic

(isothermal and isentropic) plate with wavenumber (Rh) are presented in Figs. 1 and 2, respectively. The variations of
phase and group velocities of different modes of propagation in thermoelastic plate are presented in Figs. 3 and 4. The
variations of phase and group velocities of extensional modes of (isothermal and isentropic) elastic plate are similar to that
of thermoelastic plate as observed from Figs. 1–4 with the exception that the magnitudes of phase velocities of various
wave modes in coupled thermoelastic plate are small as compared to that in elastic plate (isothermal or isentropic) at all
wavelengths. The phase velocity (V1) of fundamental mode of extensional motion decreases from a value greater than
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Fig. 1. Phase and group velocities of extensional modes in isothermal elastic plate versus wavenumber (Rh).
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Fig. 2. Phase and group velocities of extensional modes in non-conducting (isentropic) elastic plate versus wavenumber (Rh).
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158 km/s towards the thermoelastic Rayleigh wave velocity with increasing wavenumber as observed from Fig. 3, whereas
in elastic plate it becomes close to Rayleigh wave velocity as can be seen from Figs.1–2. The phase velocity of higher
extensional modes attain quite large values at vanishing wavenumber which sharply slash down to become steady and
asymptotically close to shear wave velocity at extremely large wavenumbers. The group velocities of various modes are
found to be zero at vanishing wavenumbers which correspond to the condition of zero energy transmission. The group
velocity of various extensional modes of wave propagation both elastic (isothermal or isentropic) and thermoelastic plates
increase monotonically in the interval 0rRhr1 and tend to phase velocity profiles of respective modes at high frequency
limits. Group and phase velocity profiles coincide at higher values of the wavenumber (Rh) in both elastic and
thermoelastic plates. The trends of variation of phase velocity of extensional modes in thermoelastic plate are found to be
quite similar to that reported by Achenbach [22] and Graff [26] in elastokinetics except some modifications due to the
thermomechanical coupling. According to Sharma et al. [23], at low frequencies mechanical energy transfer is more
dominant than thermal conduction and hence at low frequency limits the wave-like modes are identified with the small
amplitude waves in elastic material that does not transport heat. These may be regarded as inherent in the classical
elastodynamics derived strictly from mechanical principles. Thus the behavior and character of all the existing possible
modes of extensional motion of the thermoelastic and elastic plates are similar.

The phase and group velocities of flexural wave modes in elastic (isothermal/isentropic) and thermoelastic (CT) plates
for different values of wavenumber (Rh) are plotted in Figs. 5–8. It is noticed that the magnitudes of phase and group
velocities of various wave modes in coupled thermoelastic plate have small magnitudes as compared to that in elastic plate
under isothermal or isentropic conditions at all wavelengths. The phase velocity (V1) of fundamental mode of flexural
motion increases from zero value towards the classical thermoelastic Rayleigh wave velocity with increasing wavenumber
as observed from Fig. 7 in contrast to that in elastic plate where it becomes close to Rayleigh wave velocity as can be seen
from Figs. 5 and 6. The phase velocities of higher flexural modes attain quite large values at vanishing wavenumber which
sharply slash down to become steady and asymptotically closer to shear wave velocity at extremely large wavenumbers.
The group velocities of various modes are found to be zero at vanishing wavenumber which corresponds to the condition
of zero energy transmission. The group velocity of various flexural modes of wave propagation both elastic and
thermoelastic plates increase monotonically in the interval 0rRhr1 and tend to phase velocity profiles of respective
modes at high frequency limits. Figs. 9 and 10 show the variations of dimensional attenuation coefficients of extensional
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Fig. 5. Phase and group velocities of flexural modes in non-conducting (isentropic) elastic plate versus wavenumber (Rh).
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Fig. 6. Phase and group velocities of flexural modes in isothermal elastic plate versus wavenumber (Rh).
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and flexural motions versus wavenumber in the context of CT theory of thermoelasticity respectively. The
trends of variations of phase velocity of flexural motion in thermoelastic plate are also found to be quite similar to that
reported by Achenbach [22] and Graff [26] in elastokinetics except some modifications due to the thermomechanical
coupling.

Tables 1–3 show the variations of phase velocities (Vn
i , i¼ 1,. . .,6), group velocities (Vn

gi
, i¼ 1,. . .,6) and attenuations

coefficients ðQn
i , i¼ 1,. . .,6Þ of extensional and flexural modes with respect to wavenumber (Rh). Here normalization of

quantities has been done with their corresponding values in classical (CT) thermoelasticity so thatVn
i ¼ VF

i =VCT
i ,

Vn
gi
¼ VF

gi
=VCT

gi
and Qn

i ¼QF
i =QCT

i (i=1, y, 6), where F stands for LS or GL in case of respective non-classical theory of
thermoelasticity. Tables 1 and 2 reveal that there are significant deviations in magnitudes of phase and group velocities of
extensional and flexural wave modes in non-classical theories (LS, GL) from that of classical (CT) theory. It is observed from
Table 1 that the magnitude of phase velocity ðVn

1 Þ and group velocity ðVn
g1
Þ of fundamental mode of vibration is less than

unity in low and high frequency regime. Thus the thermal relaxation time contributes in decreasing the magnitudes of
phase and group velocities of extensional modes. The magnitudes of phase velocities ðVn

2 , Vn
4 ,Vn

5 , Vn
6 Þ and group velocities

ðVn
g2

, Vn
g4

, Vn
g6
Þare greater than unity at low frequency regime and less than unity at high frequencies. However, the

magnitudes of phase velocity ðVn
3 Þ and group velocity ðVn

g3
Þ are less than unity at low frequencies and greater than unity at

high frequency regime for both extensional and flexural motions of the plate in context of GL and LS theories of
thermoelasticity.
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Fig. 9. Attenuation coefficients of extensional motion versus wavenumber (Rh) for CT theory.
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Fig. 10. Attenuation coefficients of flexural motion versus wavenumber (Rh) for CT theory.
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In Table 2, the variations of phase velocity ðVn
i , i¼ 1,. . .,5Þ and group velocity ðVn

gi
, i¼ 1,. . .,5Þ of all the flexural modes

versus wavenumber (Rh) in the context of generalized theories (GL, LS) of thermoelasticity have been shown. It is observed
that the magnitudes of phase velocities ðVn

1 , Vn
3 , Vn

4 , Vn
5 Þand group velocities ðVn

g1
, Vn

g3
, Vn

g4
, Vn

g5
Þare greater than unity.

Thus, the thermal relaxation time contributes in increasing the magnitudes of phase and group velocities of various modes
of vibrations. The magnitudes of phase velocity ðVn

2 Þ and group velocityðVn
g2
Þ are noticed to be less than unity at all the

wavelengths for flexural motion except at certain wavelengths. It can be concluded that thermal relaxation times result in
decrease of phase and group velocities of extensional wave modes in contrast to flexural one in which case these quantities
increase with relaxation times.

The attenuation coefficients ðQn
i , i¼ 1,. . ., 6Þ of all the wave modes of extensional and flexural motion versus

wavenumber (Rh) are shown in Table 3. It is noticed that the magnitude of attenuation coefficient ðQn
1 Þ of fundamental

mode is less than unity for extensional motion and it is greater than unity in case of flexural motion at all the wavelengths.
The attenuation coefficients ðQn

2 , Qn
6 Þof extensional modes have magnitudes greater than unity at low frequencies but less

than unity at high frequency regime for both GL and LS theories of thermoelasticity. The attenuation coefficient ðQn
2 Þof

flexural motion has magnitude less than unity at low and high frequency regime except at certain wavelengths. The
magnitude of attenuation coefficient ðQn

3 Þof extensional mode is less than unity and that of flexural mode is greater than
unity at low frequency regime and vice-versa at high frequencies. The magnitudes of attenuation coefficientðQn

4 Þ of
extensional and flexural modes are less than unity at low frequency regime and greater than unity at high frequencies



Table 1
Phase (Vn

i ) and group (Vn
gi

) velocities of extensional modes versus wavenumber (Rh).

Rh Vn
1 Vn

g1
Vn

2 Vn
g2

Vn
3 Vn

g3
Vn

4 Vn
g4

Vn
5 Vn

g5
Vn

6 Vn
g6

GL

0 0.9953 0 1.0041 0 0.9961 0 1.0000 0 1.0263 0 1.0000 0

1 0.9952 0.9955 1.0040 1.0048 0.9958 0.9955 0.9980 1.0000 1.0000 0.8879 1.0061 1.1268

2 0.9955 0.9942 1.0048 0.9844 0.9955 1.0065 1.0000 1.0086 0.8879 1.0856 1.1268 0.8957

3 0.9956 0.9938 0.9950 0.9958 1.0009 1.0008 1.0047 1.0024 0.9941 0.9946 1.0045 1.0105

4 0.9954 0.9981 0.9953 0.9960 1.0009 1.0008 1.0041 1.0048 0.9943 0.9874 1.0066 1.0063

5 0.9958 0.9959 0.9955 0.9929 1.0008 1.0008 1.0043 1.0047 0.9925 1.0018 1.0065 1.0063

6 0.9958 0.9958 0.9949 0.9949 1.0008 1.0008 1.0043 1.0043 0.9944 0.9944 1.0065 1.0065

LS

0 0.9958 0 1.0041 0 0.9968 0 1.0000 0 1.0263 0 0.9737 0

1 0.9954 0.9955 1.0040 1.0048 0.9958 0.9955 1.0000 1.0000 1.0000 0.8898 1.0030 1.1241

2 0.9955 0.9965 1.0048 0.9861 0.9955 1.0065 1.0000 1.0086 0.8898 1.0876 1.1241 1.0243

3 0.9954 0.9955 0.9958 0.9965 1.0009 1.0008 1.0047 1.0024 0.9961 0.9964 1.0747 0.8903

4 0.9954 0.9980 0.9961 0.9967 1.0009 0.9976 1.0041 1.0048 0.9962 0.9964 1.0022 1.0105

5 0.9958 0.9930 0.9962 0.9935 1.0000 1.0000 1.0043 1.0048 0.9962 1.0054 1.0043 1.0042

6 0.9954 0.9954 0.9956 0.9956 1.0000 1.0000 1.0043 1.0043 0.9981 0.9981 1.0043 1.0043

Table 2
Phase (Vn

i ) and group (Vn
gi

) velocities of flexural modes versus wavenumber (Rh).

Rh Vn
1 Vn

g1
Vn

2 Vn
g2

Vn
3 Vn

g3
Vn

4 Vn
g4

Vn
5 Vn

g5

GL

0 0.9956 0 1.0002 0 0.1000 0 1.0000 0 0.9961 0

1 1.0026 1.0022 0.9891 0.9889 1.0000 1.0025 1.0112 1.0000 0.9808 0.0105

2 1.0022 1.0038 0.9889 0.9871 1.0024 0.9955 1.0000 1.0000 1.0105 1.0107

3 1.0028 0.9966 0.9882 0.9977 0.9981 1.0060 1.0000 1.0000 1.0106 1.0106

4 1.0017 0.9990 0.9914 0.9982 1.0025 1.0084 1.0000 0.9953 1.0106 1.0555

5 1.0013 1.0069 0.9934 0.9978 1.0049 0.9957 0.9985 0.9987 1.0215 1.0215

6 1.0025 1.0025 0.9945 0.9945 1.0028 1.0028 0.9986 0.9986 1.0215 1.0215

LS

0 0.9955 0 1.0002 0 1.0000 0 1.0000 0 0.9964 0

1 1.0019 1.0026 0.9887 0.9882 1.0000 1.0000 1.0112 1.0000 0.9808 1.0000

2 1.0026 1.0032 0.9882 0.9861 1.0000 0.9970 1.0000 1.0000 1.0000 1.0000

3 1.0028 1.0000 0.9874 0.9969 0.9981 1.0060 1.0000 0.9970 1.0000 1.0000

4 1.0023 1.0000 0.9906 1.0000 1.0025 1.0084 0.9984 0.9988 1.0000 1.0000

5 1.0019 1.0075 0.9934 0.9978 1.0049 0.9957 0.9985 0.9987 1.0000 1.0555

6 1.0031 1.0031 0.9945 0.9945 1.0028 1.0028 0.9986 0.9986 1.0106 1.0106
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except at certain wavelengths. The magnitudes of attenuation coefficient ðQn
5 Þof extensional and flexural modes are

magnitude greater than unity at all the wavelengths with same except at certain wavelengths.

10. Conclusions

The asymptotic operator plate model for free vibrations; both extensional and flexural, in a homogenous thermoelastic
plate leads to sixth and fifth degree secular equations, respectively, that governs frequency and phase velocity of various
possible modes of wave propagation at all wavelengths. Numeric computation to find phase velocity, group velocity and
attenuation coefficient have been done by using MATHCAD software by using Graffe’s root squaring method solve
polynomial equations with complex coefficients. The infinite power series expansions of classical thermoelastic Rayleigh–
Lamb frequency equation and secular equations obtained with operator plate model are found to be in close agreement up
to the approximations of order o(Z10). It is observed that the non-trivial roots are almost same in case of both the
techniques. Phase velocity of fundamental extensional and flexural wave modes in thermoelastic plate approach to
thermoelastic Rayleigh wave and classical Rayleigh wave velocity at large wavenumbers, respectively. It is noticed that the
thermal relaxation times have significant effect on low-frequency waves in the limiting case which supports the conclusion
that the ‘‘second sound’’ effects are short lived. The group velocity profiles of all the wave modes approach to the phase
velocity profiles of respective modes at short wavelengths for both extensional and flexural motions of the plate. Moreover,
the phase and group velocities have same magnitudes in case of non-dispersive wave modes. Higher waves modes are
more attenuated than the fundamental and second modes of wave propagation. It is also observed that the flexural wave



Table 3
Attenuation coefficients (Q n

i ) of extensional (E) and flexural (F) modes versus wavenumber (Rh).

Rh Q n
1 Qn

2 Qn
3 Qn

4 Q n
5 Qn

6

E F E F E F E F E F E

GL

0 0.9958 0.9960 1.0042 0.9048 0.9948 1.0119 1.0845 1.0166 1.3826 1.0000 1.0000

1 0.9953 1.0232 1.0039 0.9970 0.9962 1.0102 0.9889 1.0000 1.0000 0.9949 1.0000

2 0.9955 1.0176 1.0049 0.9971 0.9958 1.0076 0.9400 0.9973 1.1862 1.0111 0.8416

3 0.9955 1.0168 0.9954 0.9977 1.2000 1.0157 1.0051 0.9944 1.0117 1.0103 0.9902

4 0.9959 1.0135 1.0340 1.0011 1.0070 0.9926 1.0045 1.0104 1.0072 1.0390 0.9905

5 0.9957 1.0072 0.9950 0.9972 1.0517 1.0000 1.0047 1.0182 0.6101 1.0000 0.9906

6 0.9954 1.0042 0.9943 0.9971 1.0606 1.0075 1.0047 1.0476 1.0069 1.0099 0.9861

LS

0 0.9958 0.9960 1.0042 0.8965 0.9961 1.0119 1.0806 1.0047 1.3842 1.0042 1.0000

1 0.9956 1.0025 1.0039 0.9970 0.9962 1.0102 0.9889 0.8474 1.0000 0.9949 1.0000

2 0.9955 1.0197 1.0042 0.9971 0.9958 1.0076 0.9800 0.9973 1.1808 1.0111 0.8461

3 0.9955 1.0179 0.9954 0.9973 1.1333 1.0157 1.0042 0.9962 1.0078 1.0000 1.2683

4 0.9955 1.0145 1.0349 1.0005 1.0465 0.9926 1.0045 1.0104 1.0036 1.0000 0.9953

5 0.9953 1.0080 1.0446 0.9966 1.0172 1.0000 1.0047 1.0182 0.6101 1.0000 0.9953

6 0.9954 1.0056 0.9951 0.9965 1.0303 1.0075 1.0047 1.0000 1.0069 1.0000 0.9954
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modes are less attenuated than extensional one. The thermal variations result in reduction of phase and group velocities of
the wave modes because of their attenuating character. The asymptotic differential equations which govern flexural and
extensional motions can be written from the respective frequency equations obtained here without any difficulty as was
done by Losin [15,16] though order of equations will be higher here. Operator plate model approximates thin and thick
plates structures more accurately than the other methods. Because it allows elimination of restrictions due to the
convergence interval for the infinite matrix series and permits applicability of the model for short and long wavelength
limits. Moreover, the derived dispersion relations give good approximations without any correction factors as in the
Reissener–Mindlin theory.
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Appendix

The quantities ai, bi, di (i=1, 2, 3) and qi (i=1, 2, 3, 4, 5) used in Eq. (21) are defined as

a1 ¼ 4ðd4
�2þe1d1d

2t�1
1 Þ,

a2 ¼ 4d2
½d2
ðd2
þ5Þ�10þ2t�1

1 e1f7þd
2
ð1�2d2

�d1t0Þg��16 (A.1)

a3 ¼ 1þ5d4
ð2d�2

þ1�t�1
1 e1Þ, b1 ¼ 2t�1

1 e1dd1ðt0d
2
�d1Þ,

b2 ¼�10t�1
1 e1dd1ðt0d

2
þd1Þ (A.2)

b3 ¼�2t�1
1 e1d½1þd

6
fd1d

�4
ðt0

2þ5Þþt0�1g�, d1 ¼ 3þ2d2
ð1�t0�e1Þ (A.3)

d2 ¼ 4d2
½1�t0þ5ðd2t0�2Þ�, d3 ¼ 10þd2

½5ð1�t0Þþ2d2
f1þt0ðt0�6Þg� (A.4)

q1 ¼ d2
½3þt0ð1�6d4

Þ�t�1
1 e1�, q2 ¼�d

4
½t0ð3�t0Þþt�1

1 e1ð1�2t0Þ� (A.5)

q3 ¼ 2½d2
ft�1

1 e1ð3�5d2
Þþ2t0ð8�15d2

Þþ5ð2þd2
Þg�5� (A.6)

q4 ¼ d2
½t0fd

2
ð37�10d2

Þ�10gþ10t�1
1 e1f1þt0d

2
ð1�2d2

Þg�5d2
� (A.7)

q5 ¼ d6
½t0ð5�10t0þt0

2Þþt�1
1 e1f1þ3t0ðt0�4Þg� (A.8)

The quantities Bi (i=1 to 7) and pi (i=1 to 10) used in Eq. (26) are given as

B1 ¼m6ðp2þp3Þþm7ðp2þg1Þþp3ð4d
2
�3Þ�þ240d�2

½m4p5�m5p4�10dt1ð2p7�m3p6Þ (A.9)
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B2 ¼ 20fp2d
2
þp3ð3d

2
�1Þ�4m5ð5d

2
�1Þg�m6p1�m7ðp1�b2Þ (A.10)

B3 ¼m7g1þð4d
2
�3Þðp2þp3Þ�þ240d�2

½p5ð1þm4Þþðm5�m4p4Þ�10dt1ð2p7�m3p6Þ� (A.11)

B4 ¼m6ðp1�g2Þ�m7g2þð4d
2
�3Þp1þ20fðg1þ3m2þ96m5�120m4Þd

2
þp3g6�m2þ24 (A.12)

B5 ¼ d2 1

10
p1ð1þ3d2

Þþd2 1

10
þp2m5þ240g4�144e1d

2
ð2�d2

Þ

� �
þp3�48g4

� �
(A.13)

B6 ¼ d2
½3ðp2þg1Þ�g1m6�4d2

ðp2þg1Þ��24½p4�m4g7þ2p0dt1� (A.14)

B7 ¼ 24d2
ð4m4�5Þþg1ð3d

2
�1Þþp2g6þ24þ0:05fm6g2�ð4d

2
�3Þðp1�g2Þg (A.15)

p0 ¼ 2d3e1ð1�5d2
þ2d4

Þ, p1 ¼ 288½�1þd2
ðt0þe1Þ�,

p2 ¼ 24½6�m1þ2d2
fð7d2

�10Þt0þe1g� (A.16)

p3 ¼ 24½1þd2t0ðt0d
2
�6Þ�e1ð1�6d�2

þ2t0Þ�,

p4 ¼ 4d2
½16þd2

f13d2
�37þe1ð1þ2d2

Þg� (A.17)

p5 ¼ d2
½23þd4

f11�50d�2
þe1ð2þ9d4

Þg�,

p6 ¼ e1t�1
1 d3
½2þd4

fð5þt0Þ�14d�2
� (A.18)

p7 ¼ e1t�1
1 d7
ð1þt0�4d�2

Þ, p8 ¼ 2d5t1ð14d�2
þt0þe1�31Þ,

p8 ¼ 2d5t1ð14d�2
þt0þe1�31Þ (A.19)

p10 ¼�8d3t1ð5d
2
�2Þ, g1 ¼ 192ð3�2d2

Þ,

g2 ¼ 576ð2�d2
Þ, g3 ¼�e1t�1

1 dð2�d2
Þ (A.20)

g4 ¼ d2
ðt0þe1Þ, g5 ¼ 3�2d2, g6 ¼ 2d2

�1, g7 ¼ 8d2
½5ð1þd4

Þ�12d2
� (A.21)

The quantities ri (i=1 to 10) and ji (i=2, 4) utilized in Eq. (34) are defined as

r1 ¼�10d2
þj2ð19�24d2

þ20j2Þþj4½31�12ð2d2
þj2Þ�þj2½10�43d2

þ12ðj2þ2j4Þ� (A.22)

r2 ¼ 5�68d2
þ4j2ð4�6d2

Þþ8j4ð8�3d2
Þþ4j2ð17�28d2

�16j2þ12j2�9j4Þ (A.23)

r3 ¼�10d2
þj2ð19�24d2

þ20j2Þþj4½31�12ð2d2
þj2Þ�þj2½10�43d2

þ12ðj2þ2j4Þ� (A.24)

r4 ¼�41d2
þ14þ4j2d1þ4j4ðd1þ4Þþj2½25�4d2

þ16ðj2þd1�2j2Þ� (A.25)

r5 ¼ 15d2
�1þ8j4�2j4ð4d1þ5Þþj2½13d2

�23d1þ2j2ð4j2�5Þ�8j4� (A.26)

r6 ¼�2d2
þ54j2d1þj4ð2þ5d1Þþj2ð2�6d2

þ2j2þ5j4�4j4Þ (A.27)

r7 ¼ 39d2
�6þ4j2ðd

2
þ3Þþ4j4ðd

2
�3Þ�j2ð39�36d2

þ24j2þ2j4þ36j2Þ (A.28)

r8 ¼ 18d2
�1þj2ð12d2

þ49Þþj4ð12d2
�1Þ�3j2ð6�13d2

þ12j2þ4j4Þ (A.29)

r9 ¼ 3d2
þj2ð6þ13d2

þ12j2j2Þþj4ð13d2
�6Þ�j2ð3�18d2

þ12j2þ13j4Þ (A.30)

r10 ¼j2ð1þ6d2
þj4Þþj4ð6d

2
�1Þþj2ð3d

2
�2j2�6j4Þ (A.31)

ji ¼ di
ðaiþbiÞ, ji ¼ d2iaibi, i¼ 2, 4 (A.32)
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